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Progressive Alignment of Shapes

Ashwin Gopinath⇤ David Kirkpatrick† Paul W. K. Rothemund‡ Chris Thachuk§

Abstract

We introduce a natural property of shape pairs, that,
starting from any initial overlapping configuration, they
can be brought into a unique configuration of maximum
overlap by a continuous motion that monotonically in-
creases their overlap. The identification of such shapes
is motivated by applications of self-assembly, driven by
molecular forces, in nanofabrication processes.

1 Introduction

Certain shapes, a disk is the simplest example, have
the property that, starting from any initial placement
with non-zero overlap with a target placement, there is
a continuous rigid motion (a simple translation between
centres, in the case of a disk) that takes the shape to its
target placement with monotonically increasing overlap.
We are interested in designing–and certifying–such self-
aligning shapes. More generally, we are interested in
shape-target pairs, under the additional restriction that
the motion terminates in a unique placement that max-
imizes the overlap with the target. (Because of their
rotational symmetry, disks clearly do not satisfy this
restriction.)
We formalize the notion of shape alignment with some

preliminary definitions. A (planar) shape is a connected
bounded subset of <2. A placement � of a shape A

is a proper rigid transformation of A (expressed as a
translation and rotation of A, with respect to its cen-
tre of mass). We will frequently refer to both � and
the resulting shape, denoted A�, as a placement of A.
Given a target shape T , the T -overlap of a placement
A� is just area of intersection of T with A�. Placements
with non-zero T -overlap are said to be T -proximate. A
placement A� is locally (resp. globally) optimal with re-
spect to target shape T if the T -overlap of A� is locally
(resp. globally) maximum in the space of all placements
of A. A T -alignment of shape A (or simply alignment,
when T is understood), from placement �0 to placement
�1, is a continuous function µ from [0, 1] to T -proximate
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placements of A, with µ(0) = �0 and µ(1) = �1. An
alignment µ of A is T -progressive if the T -overlap of
Aµ(j) exceeds that of Aµ(i), for all 0  i < j  1.
The pair (T,A) is an optimally aligning pair if there
is a T -progressive alignment of A to a unique globally-
optimal placement, from every T -proximate placement
of A. (Note that in this case A has exactly one locally
optimal placement.) If (A,A) is an optimally aligning
pair then we say that A is a self-aligning shape.

Figure 1: a two phase alignment pathway ⇧ =
A↵, A� , A! for an equilateral triangle A and target
placement T . In the first phase, shape A is translated
(from its initial placement A↵ to placement A�) along
the vector that brings its centre coincident with that
of T . In the second phase, A is rotated by ⇡ until it
coincides with T (placement A!). Shown above are the
relative placements of A and T . Shown below is the rele-
vant projection of the alignment landscape that contains
the pathway ⇧ (the directed path highlighted in red).

We begin with a simple example to illustrate some
of the concepts defined above (see Fig. 1). Consider an
equilateral triangle A, with sides of length 1, centred at
(0, 0). An alignment of A, from some initial placement
A↵ (with rotation ⇡) to some final placement A! (with
rotation 2⇡), is a continuous sequence of placements,
from A↵ to A!.

The shape-pair (T,A) defines an alignment landscape
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in 4-dimensional space. An example pathway in that
landscape is illustrated in Fig. 1. Due to the 3-fold rota-
tional symmetry of A, and since A and T are congruent,
the alignment landscape has three global maxima where
A has been rotated by angle ✓ 2 {0, 2⇡/3, 4⇡/3}. After
the centre of A has become coincident with that of T
(placement A�) the alignment path rotates A through
a first and then a second global maximum. Note that
the example path is not T -progressive, but the prefix of
the path ending at the placement with rotation 4⇡/3 is
progressive.

Observe that the absence of self-similarity alone is not
su�cient to guarantee that a shape is self-aligning (see
Fig. 2).

Figure 2: a right triangle is not self-aligning since many
placements are local maxima.

This leaves us with the question: what shapes are
self-aligning or, more generally, what shape-pairs are
optimally aligning? One strategy is to separately model
each specific alignment landscape with su�cient preci-
sion to e↵ectively rule out the existence of undesirable
local maxima. Our goal is to address this question using
more precise geometric arguments that (i) bring more
clarity to our understanding (in terms of parameter set-
tings for certain families of shapes) of the shape char-
acteristics that support self-alignment, and (ii) help to
inspire the design of novel shapes with other desirable
characteristics.

In the next section, we describe some of the moti-
vation for the study of optimally-aligning shape-pairs
that derives from applications in nanofabrication. We
also review some related work and identify the key dif-
ferences in the analytic approach used in this paper.

Section 3 sets out our results on optimally-aligning
shape-pairs in a staged fashion, starting with shapes
that progressively align using pure translations or pure
rotations, and moving on to those whose progressive
alignment draws on a combination of these motions.

Our presentation is more illustrative than comprehen-
sive, hopefully raising more interesting questions than
we have settled.

2 Background and motivation

The problem of designing/characterizing self-aligning
shapes, or, more generally, optimally aligning shape
pairs, is a natural geometric problem, worthy of study
without further motivation. However, it turns out to
have significant practical importance as well. Consider
the task, arising in the context of nanofabrication, of

producing a particular pattern on a flat surface. The
pattern may be printed or etched (e.g. lithography), or
individual components placed precisely until the pattern
emerges. These are examples of pattern assembly di-
rected by an external process. In contrast, autonomous
self-assembly is the process by which a designed pattern
emerges by assembling itself from constituent parts.
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Figure 3: (a) DNA origami technology can fabricate 2D
shapes on the nanoscale, such as a triangular annulus.
(b) An atomic force microscope image of the triangular
annulus. (c) Triangular annuli in a lattice arrangement
on a surface. (d)–(f) Atomic force microscope images of
other shapes realized with DNA origami. Scale bars in
(b) and (d)–(f) are 50 nanometers.

A very successful example of self-assembly, driven by
molecular forces, is DNA origami [6] which has become a
foundational technology in nanoscience [2]. The process
involves a long sca↵old sequence of DNA — typically
a circular plasmid — and a collection of short staple

sequences that are complementary to two or more re-
gions on the sca↵old. When annealed in an appropriate
bu↵er solution, each staple strand “pinches” regions of
the sca↵old together according to their designed com-
plementarity. Typically, this process can result in the
assembly of ⇡ 1010 copies of a designed 2D or 3D shape,
with feature resolution of 6 nanometers (nm) [6]. In con-
trast, the smallest resolution of any feature in current
CMOS processes is 14 nm.

E↵orts have sought to place these DNA origami on
a surface. Kershner et al. [4] and Gopinath & Rothe-
mund [3] demonstrated a combination of directed- and
self-assembly by creating a surface with a regular lattice
of triangular patches, via ebeam lithography, to which
triangular shaped origami could bind (see Fig. 3c).

That work was the original motivation for our study
of the progressive alignment of shapes since (i) origami
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can initially land (from solution) onto the surface1 in
any orientation or translation relative to a patch, and
(ii) the electrostatic force between patch and origami,
coupled with stochastic perturbation, drives a process
to improve the binding between the pair. To ensure an
origami cannot become “stuck” in a degenerate place-
ment, the energy landscape exhibited by the patch-
origami pair should have the following property: from
all initial placements there should exist a path, to one
or more of the designated final placements, that mono-
tonically increases the number of chemical bonds (in
this case salt-bridges) between the origami and surface.
We model this in the shape alignment problem by en-
suring there is a progressive alignment from any initial
placement to a designated final placement.
While equilateral triangles have been demonstrated

experimentally to place well, each origami may be in
one of three final states due to the 3-fold rotational
symmetry of the patch-origami pair. It is natural to
ask whether there exists a patch-origami pair that has
a unique local maximum of overlap. Such a pair would
enable placement of a single molecule on a surface, with
6 nm precision, since molecules can be attached to an
origami at this same resolution. In this way, DNA
origami acts as a molecular breadboard.
Böhringer and co-authors [5, 7, 1] encountered the

problem of designing self-aligning shapes in the con-
text of the study of surface-tension driven self-assembly
of micro-components in microelectromechanical systems
(MEMS). Their analysis is based on a first-order ap-
proximation of the energy model that reduces the prob-
lem to the self-alignment question posed above. They
performed an experimental evaluation of a wide variety
of shapes, and an exact analysis of a family of shapes
formed by addition and subtraction of solid disks.
Their exact analysis led to a complete characteriza-

tion of the shapes, called death-stars below, that are
guaranteed to self-align. In a nutshell, this analysis re-
lies on the simplicity of regions formed by intersecting
disks to give a precise expression for the area of inter-
section of death-stars in a specified placement, as well
as its derivative with respect to a specified direction
of motion. This approach is simply not feasible for
more complicated shapes that necessarily arise in our
intended application. Furthermore, it is focused on op-
timizing certain shape parameters, ultimately through
the numerical solution of certain systems of constraints,
that, for the kind of simple alignment paths that arise
in practice, are rather easy to approximate using more
straightforward geometric arguments.
The analysis techniques used in this paper are based

on a geometric description of motion paths, and can be
used to show a larger class of shape-pairs have the req-

1
A 2D (flat) origami can be designed to ensure that only one

of its two faces can stick to the surface.

uisite properties. This is important in the context of
DNA origami where shapes are rasterized; those whose
boundary has low curvature can be approximated well,
those with high curvature cannot. Our approach is to
view the area of intersection of a target shape T and a
placement A� of a movable shape A as an integral of in-
finitesimal strips (referred to as cuts) parallel to a spec-
ified direction of motion. Then, to confirm that motion
from A� in this specified direction leads to an increase
in the T -overlap, it su�ces to analyze and accumulate
the change within each cut. (In e↵ect we di↵er from the
previous approach by simply interchanging the order of
integration and di↵erentiation.) The utility/versatility
of this approach stems from the fact that the boundary
of T \A� can have a simple description in terms of por-
tions of the boundary of T and A�. Thus, the change
within each cut can be characterized by the boundary-
type of the endpoints of the intervals of T \A� that live
within that cut. We make this approach more concrete
in the next section.

3 Examples of certified progressive alignments

3.1 Progressive alignment by translation

Consider again the case of a simple disk shape.
Fig. 4 (left) illustrates a typical T -proximate placement
of a red disk A relative to a target placement T (blue).
If A is translated horizontally, bringing its centre closer
to that of T , the area of T -overlap clearly increases. One
way of seeing, and quantifying, this is to imagine slic-
ing the overlap lens into infinitescimal cuts, parallel to
the direction of translation, and to analyse the (instan-
taneous) change of length of each cut. As illustrated,
every cut is bounded on the left by the boundary of A
and on the right by the boundary of T , and so each cut
increases in length in proportion to the length of the
translation of A. It follows that the rate of increase in
overlap is proportional to the vertical extent (i.e. the
length of the vertical projection) of that portion of the
boundary of A that forms part of the left boundary of
the intersection.

Note that if shape A is replaced by any shape whose
smallest enclosing disk coincides with A, then we can,
in a similar way, measure the rate of increase in overlap
by the length of the vertical projection of that portion
of the boundary of A that forms part of the left bound-
ary of the intersection, minus the (necessarily smaller)
length of the vertical projection of that portion of the
boundary of A that forms part of the right boundary of
the intersection.

To see a slightly more general situation, consider the
case of an annulus (see Fig. 4 (right)). In this case
the intersection in a typical T -proximate placement is
a region that, when sliced into infinitescimal horizontal
cuts as before, has some cuts bounded on the left by the
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Figure 4: (a) disk and (b) annulus placements.

boundary of A and others by the boundary of T . Simi-
larly for the right end of the cuts. As before, cuts that
are bounded on the left by the boundary of A and on
the right by the boundary of T increase in length as A
is translated left. However, just the opposite is true for
cuts with opposite bounding conditions. Furthermore,
cuts bounded on both ends by the boundary of the same
shape do not change in length under infinitescimal mo-
tion of A. Thus we can measure the total rate of change
by accumulating the length of the vertical projection of
the portion(s) of the boundary of A that coincide with
the left boundary of the intersection, minus the length
of the vertical projection of the portion(s) of the bound-
ary of A that coincide with the right boundary of the
intersection, plus the length of the vertical projection
of the portion(s) of the boundary of T that coincide
with the right boundary of the intersection, minus the
length of the vertical projection of the portion(s) of the
boundary of T that coincide with the left boundary of
the intersection.

To ensure that a translation taking the centre of A
onto the centre of T is progressive (i.e. the rate of
change is always positive) for an annulus, it su�ces
to choose the radius of the inner circle of the annu-
lus in such a way that for all T -proximate placements
the height of the lens (red dashed segment) is at least
twice the height of the inner and outer circle intersec-
tion (dashed blue segment). It is easy to confirm that,
subject to this constraint, the rate of change is mini-
mized when the annulus “holes” are disjoint. It follows
that, with this same choice of inner radius, the same
annulus and target, with arbitrary content inside the
inner circles, will progressively align to a configuration
in which the annulus and target centres coincide.

3.2 Progressive alignment by rotation

Of course, even if a shape is self-aligning, it is only coin-
cidentally possible to achieve this by translation alone.
Fortunately, our analysis of progressive alignments us-
ing pure translation has a direct counterpart for pure
rotations. As before it is helpful to illustrate this with
a simple example. Fig. 5 (left) illustrates a proximate
placement of a yin-yang shape A (red) with respect to
a congruent target T (blue). It is not surprising that

translation to a configuration (Fig. 5 (right)) in which
the centres coincide is not progressive. Nevertheless,
once the centres coincide a rotation about the centre
su�ces to complete the alignment in a progressive fash-
ion.

In the case of the T -proximate yin-yang configura-
tion in Fig. 5 (right), observe that at every radius r

no larger than the outer radius the intersection of the
circle of radius r (the counterpart of an infinitescimal
strip) with the current placement-target overlap is an
arc bounded on the counter-clockwise end by a portion
of the boundary of A and on the clockwise end by a
portion of the boundary of T . Thus a counter-clockwise
rotation of A will increase the length of all such arcs,
ensuring that the intersection increases until it reaches
it unique maximum.

Figure 5: yin-yang shape placements.

Of course, many other shapes, including a half circle,
enjoy this same progressive rotational alignment prop-
erty. We have illustrated the yin-yang shape because
its central, but non-reflective, symmetry turns out to
be useful in certain applications.

3.3 Progressive alignment by translation then rota-

tion

Figure 6: a self-aligning shape.

Combining the observations of the previous two sec-
tions, it follows directly that an annulus with a su�-
ciently small inner radius whose hole circumscribes a
copy of the yin-yang shape (see Fig. 6) is self-aligning.

3.3.1 Self-alignment of disk with o↵set hole

Another way to realize a self-aligning shape is to break
the symmetry of an annulus and o↵set the “hole”. As
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previously noted, such a family of shapes was the focus
of a detailed analysis by Böhringer et al. [5, 7]. Here
we observe that a straightforward application of the ap-
proach discussed in the previous two subsections allows
us to draw conclusions about the specifications for such
shapes, and generalizations, that ensure the self-aligning
property.

Figure 7: a generic death-star placement.

For obvious reasons we refer to the unit-radius disk
with an o↵set hole of radius r as a “death-star” (al-
though our intended application involves a realization
at a considerably di↵erent scale). Fig. 7 illustrates a
death-star A (red) in a proximate placement with re-
spect to a target T (blue). Here holes are depicted in
bold color to help in visualizing their interaction.
We will maintain the invariant that the star centres

lie on the x-axis. Our progressive alignment in all cases
consists of two phases. Phase 1 is a simple translation,
taking the centre of star A onto the centre of star T .
Phase 2 is a rotation of star A about its centre so as
to reduce the separation of the hole centres to zero. It
is easy to see that, provided the holes overlap the star
centre, phase 2 monotonically increases the star over-
lap, since the hole intersection increases monotonically.
Thus it remains to analyze the behaviour of phase 1.
We first observe that in the absence of intersections

between holes and the opposite star, which is unavoid-
able when the distance between the star centres is at
least 2r + 1, a translation of A towards T increases the
intersection of the stars in proportion to the height of
the lens formed by the intersection of the disks A and T

(just as in the case of intersecting disks discussed ear-
lier). More generally, for smaller star separations, when
the holes may intersect their opposite star, we can, as
before, view the star intersection (which of course is
a subset of the lens) as being made up of infinitesimal
cuts, whose length may increase, decrease or remain un-
changed as a result of such a translation.
As described in the analysis of annulus alignments,

cuts are of four types depending on the boundary types
of their left and right delimiters. Cuts delimited on the
left by a portion of the A star boundary and on the
right by a portion of the T star boundary, increase in
length in proportion to the length of the translation.
Cuts delimited on the left and right by portions of the
boundary of the same star do not change length with

such translations. Finally, cuts delimited on the left by
a portion of the T star boundary and on the right by
a portion of the A star boundary, decrease in length in
proportion to the length of the translation. Since the
right (respectively, left) boundary of the A disk (respec-
tively, T disk) is disjoint from the lens, it follows that
every shrinking cut connects a point on the right bound-
ary of the T hole to a point on the left boundary of the
A hole, and every unchanging cut involves a point on
the right boundary of the T hole or a point on the left
boundary of the A hole. Thus there is an expanding cut
at every height that intersects the lens, but neither of
the hole boundaries within the lens. Hence the star in-
tersection increases at least in proportion to the height
of the lens minus the sum of lengths of the vertical pro-
jections of the hole boundaries within the lens. (Here
we have used the fact that cuts that intersect both hole
boundaries are double counted in the vertical projec-
tions. Furthermore, we have not discounted the possible
hole intersection, which can only reduce the shrinking
cuts, or those portions of the right boundary of the B

hole, or the left boundary of the B hole, that intersect
the lens, which can only add to the expanding cuts.)

Thus, it remains to demonstrate that in all configu-
rations the height of the lens exceeds the sum of lengths
of the vertical projections of the hole boundaries within
the lens. Note that this is obvious if the distance be-
tween A and T is less than 4r (a necessary condition for
the holes to intersect) provided r is chosen so that the
height of the lens is at least 4r, in this case.

When the distance between A and T is at least 4r,
we observe that the length, as well as the vertical pro-
jection, of both hole boundaries within the lens is max-
imized when the distance between the centre of A and
the centre of the T hole (respectively, the centre of T
and the centre of the A hole) is minimized, i.e. the hole
centres lie on the x-axis (see Fig.8). So, we hereafter
study configurations in which both hole centres lie on
the x-axis. Note: this does not suggest that our trans-
formation rotates the stars to realize such a configura-
tion; in fact such a rotation would in general reduce the
start intersection.

Figure 8: a placement when both hole centres lie on the
x-axis.

It remains to analyse the rate of change of the star
overlap as A is translated to make its centre coincident
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with that of T . As in the case of the annulus, this can be
achieved by studying the length of the vertical projec-
tions of the portions of the boundary of A and T that
delimit the left and right boundaries of A \ T . Since
these projections change in a monotonic way with a de-
crease in the separation of A and T , it is straightforward
to establish a largest value for r that will ensure that
this translation phase is progressive.

As with the annulus we note that if the star A is mod-
ified in such a way that its hole is a proper subset of the
A hole then the translation of this shape to T remains
progressive. Of course, there is no guarantee that the
second (rotation) phase would remain progressive with
such a modification, but our argument for progressive
rotational alignments allows us to make such an asser-
tion in certain special cases, for example when the A

hole is reduced to an inscribed square.

3.3.2 Progressive alignment of regular polygons

Figure 9: placements of regular 5-gons.

As a final example of the application of our ap-
proach to the certification of progressive alignments us-
ing translation and rotation, we consider the natural
question of whether every k-regular polygon A progres-
sively aligns to one of its maximally overlapped config-
urations with a congruent target T (see Fig. 9). It is
straightforward to see that this is true if the intial and
final configurations share a common centre. Thus it suf-
fices to argue that, for any T -proximate placement A�,
a translation taking A to a placement A0 whose centre
coincides with the centre of T , is progressive.

To confirm that this is the case we imagine any trans-
lation taking A from a centre-aligned placement A0 in
any direction, and argue that the overlap A\T decreases
with distance. This follows from several simple observa-
tions. First, we note that the boundary of the intersec-
tion A0\T is semi-regular convex polygon consisting of
2k equal length sides drawn in alternating fashion from
the sides of A0 and T . (This is easily demonstrated by
appealing to mirror symmetry across any line through
the common centre and any point of intersection of the
boundaries of A0 and T .)

It follows from this that contracting the sides of the
boundary of A0 \ T that correspond to boundary edges

of A0 (respectively T ) forms a regular k-gon. Thus,
when we accumulate the vertical projections of por-
tions of the boundaries of A0 and T that determine the
boundary of A0 \ T we get a net change of zero for any
instantaneous translation from the placement A0.

The second observation is that, for any placement
formed by an infinitescimal translation from placement
A0, the magnitude of the associated projections that
count positively in the accumulated projection length
decrease with distance, and those that contribute nega-
tively increase. This demonstrates that for all place-
ments in the immediate neighbourhood of a centre-
aligned placement the derivative of the change of over-
lap, with respect to distance, is negative, confirming
that any centre-aligned placement is a local maximum
with respect to all translations.

To confirm that every centre-aligned placement is in
fact a global maximum, with respect to all translations,
we note that the second observation extends to transla-
tions that take A from A0 to any placement whose sym-
metric di↵erence with T contains three or more com-
ponents. (To demonstrate this we cut the overlapped
placements into strips, parallel to the direction of trans-
lation, bounded by lines through each of the polygon
vertices, and accumulate the change of overlap in each
strip separately.)

Finally, we note that if A has been translated to a T -
proximate placement whose symmetric di↵erence with
T has two components, then an argument analogous to
that used in the limiting case of disks (recall Fig. 4(a))
shows that such placements can be improved by any
infinitescimal translation in the direction that takes the
centres back into alignment.

4 Conclusion and Future Work

We have identified an interesting property of pla-
nar shapes that models a desirable attribute of self-
assembling nanofabricated structures. We have iden-
tified a simple approach to the certification of this pro-
gressive alignment property and illustrated it with some
fundamental examples, some of which are beyond the
reach of earlier approaches, and all of which serve as
potential building blocks for the design of shapes with
other desirable properties in a nanofabrication context.

Our study of self-aligning shapes is still in a pre-
liminary state. One indication of this is that at this
point we still do not know if there exist convex shapes
that are self-aligning. Furthermore, while we have rea-
sonable tools for certifying progressive alignments that
are composed of pure translations and pure rotations,
these do not allow us to address arbitrary rigid motions,
which presumably could be required for some progres-
sive alignments.
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timal designs for self-alignment in surface tension driven
micro-assembly. In Micro Electro Mechanical Systems,

2004. 17th IEEE International Conference on.(MEMS),
pages 9–12. IEEE, 2004.

[6] P. W. Rothemund. Folding DNA to create nanoscale
shapes and patterns. Nature, 440(7082):297–302, 2006.

[7] X. Xiong, S.-H. Liang, and K. F. Böhringer. Geomet-
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